Alternatively:
\[\eta = \frac{MA}{VR} \]
\[= \frac{9}{12} \]
\[= 0.75 \]
\[= 75\% \]

22.3 Friction Effort

If the machine were perfect, no work would have to be done against friction, and the efficiency would be 100 per cent. This would mean that for a perfect machine:

\[\frac{MA}{VR} = 100\% \]

or that the ideal mechanical advantage is equal to the velocity ratio:

\[MA = VR \]

It also means that if there were no friction to be overcome, it would take a smaller effort to move the same load. The effort required to move a given load \(F_L \) if the machine is 100 per cent efficient is called the theoretical effort, \(F_{th} \). Substituting into \(MA = VR \), we have:

\[\frac{F_L}{F_{th}} = VR \quad \text{or} \quad F_{th} = \frac{F_L}{VR} \]

The difference between the actual effort \(F_E \) and the theoretical effort \(F_{th} \) is the effort wasted in overcoming friction and is known as the frictional effort, \(F_F \).

\[F_F = F_E - F_{th} \]

Example 22.3

For the machine in the previous examples, calculate the theoretical and frictional efforts.

Solution

Theoretical effort:

\[F_{th} = \frac{F_L}{VR} \]
\[= \frac{450}{12} \]
\[= 37.5 \text{ N} \]

Frictional effort:

\[F_F = F_E - F_{th} \]
\[= 50 \text{ N} - 37.5 \text{ N} \]
\[= 12.5 \text{ N} \]

22.4 THE LAW OF A MACHINE

The law of a machine is an equation which expresses the relationship between load \(F_L \) and effort \(F_E \). In many cases this relationship, when plotted as a graph of effort against load, is a straight line. Its mathematical equation is of the linear form:

\[F_E = aF_L + b \]

where \(F_E \) is the effort,
\(F_L \) is the load,
\(a \) is the slope of the graph,
\(b \) is the value of \(F_E \) where the graph cuts the \(F_E \) axis.

After the constants have been determined for a particular machine, the law of the machine can be used to predict the effort required to move any load by the machine.

Example 22.4

The machine in the previous examples was tested under different loads, and the following efforts were recorded for each of the loading conditions:

<table>
<thead>
<tr>
<th>Load (F_L) (N)</th>
<th>0</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effort (F_E) (N)</td>
<td>5</td>
<td>25</td>
<td>45</td>
<td>65</td>
<td>85</td>
<td>105</td>
</tr>
</tbody>
</table>

Plot the load–effort graph and determine the law of the machine. Use the law to estimate the effort required to move a load of 700 N.

Solution

![Fig. 22.2](image)

In Figure 22.2, which is the load–effort graph, the line cuts the effort axis at \(F_E = 5 \). This is the value of \(b \).